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I. INTRODUCTION

Adobe Flash is a platform independent multimedia format
which is widely used for advanced interactive content in the
shape of the file called “SWF” from web, office applications,
etc. Adobe have announced that Adobe Flash was installed
over 500 million times in the second half of 2013 [1].

However, its popularity makes it a hot target for malware
attacks. Adobe Flash vulnerability statistics, provided by The
Common Vulnerabilities and Exosures (CVE) system [2], have
shown a gradual increase as shown in Figure 1. Moreover,
81% of Adobe Flash vulnerabilities have received 9+/10 score,
which means that Adobe Flash malware attacks are one of
the most serious threat. In 2014, Adobe Flash vulnerability
CVE-2014-0515 was used by a surveillence malware known
as “Casper” in the wild [3].

In order to detect Flash malware using machine learning,
previous work [4], [5] have been proposed so far. This work
use manually predefined malicious features (e.g. shell-code,
environment variables, a vulnerability-specific Tag). Figure 2
shows the position of predefined malicious features. When
Flash malware uses the predefined features, the previous work
is effective, but if new Flash malware uses the Malicious
feature set A (named as zero-day Flash malwares) instead of
predefined features, it could evade the previous work. Also, we
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Fig. 1. The number of Adobe Flash vulnerabilities: It shows that the number
of Adobe Flash vulnerabilities is increasing, and the percent of 9+/10 score
vulnerabilities is 81%.

take into account the benign features, since it indicates normal,
so the accuracy could be increased. Notice that all features are
able to be turned into benign or malicious over a period of
time, so decision boundary could be changed.

Therefore, we have to use as many features of SWF as
we can. To handle large and complex features, deep learning
(which is state-of-art machine learning technique and shows
accurate image classification results [7]) is employed to our
system. Especially, the abstraction ability of deep learning
makes it possible to abstract benign or malicious features
among the features.

In this paper, for all of SWF features to apply deep
learning, we 1) extract all of the features from both static
analysis and dynamic analysis (such as API call sequence), and
then 2) convert it to numeric, finally 3) apply the deep learning
technique to classify the samples. Therefore, we provide the
following main contributions:

(i) We present a novel method, based on deep learning, for
detecting zero-day Flash malwares through all of the
features SWFs have, which enables to abstract benign
or malicious features, but the previous work use only
predefined malicious features.

(ii) Therefore, our detection system can keep track of zero-
day Flash malwares. In other words, it can learn new
features of zero-day Flash malwares, but the previous
work couldn’t do.

(iii) We evaluate our detection system through Flash malwares
collected in the wild.
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Fig. 2. A benn diagram for benign, malicious and not evaluated features:
Predefined Malicious features are not enough to detect the Malicious feature
set A.



II. DESIGN

Our design goal is to use deep learning to accurately
classify zero-day Flash malwares, so all of the features SWFs
have need to be converted to numeric to preserve as possible
as we can. Our framework has three phases, 1) Extraction, 2)
Conversion, and 3) Classification as shown in Figure 3.

The Extraction phase has two parts: Static analysis module
extracts a Header, Tags and Action bytecode by parsing, and
Dynamic analysis module generates API calls by executing the
given SWF files. The static analyzed data is divided into raw
values and a sequence of instructions. The dynamic analyzed
data is composed of a sequence of API calls.

The Conversion phase converts from the data generated
from the Extraction phase to a scaled value 0∼1 or matrix . If
raw values are given, it is scaled to between 0 and 1 to reduce
computational complexity. If the sequence of instructions or
API calls are given, it is projected to a N*M matrix, where N
is the number of sequences and M is the number of types. For
example, if a sequence of 5 instructions “ADD, DEL, ADD,
MOV, DEL”, and 3 types of instruction ‘ADD’, ‘DEL’, ‘MOV’
is given, N is 5 and M is 3. In this case, if we assume ’ADD’:[1
0 0], ’DEL’:[0 1 0] and ’MOV’:[0 0 1], we can make a 5*3
matrix [[1 0 0], [0 1 0], [1 0 0], [0 0 1], [0 1 0]].

The Classification phase trains the deep learning models
or classifies the given SWF through the data generated from
the Conversion phase. If the scaled values are given, Deep
Feed-forward Neural Network will be used. If the matrix is
given, Deep Recurrent Neural Network will be used. In other
words, the scaled values of a Header and Tags will be trained
or classified using Deep Feed-forward Neural Network, and
the projected matrices of Action bytecode and API calls will
be trained or classified using Deep Recurrent Neural Network
which is able to train or classify the sequence of the data. At
last, Ensemble method will combine all of the result generated
from the Deep learning models.
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Fig. 3. Deep learning based detection system for zero-day Flash malwares

III. PRELIMINARY RESULT

We implemented a prototype of the Static Analysis module
(which makes boolean depending on the presence of Tags. For
example, if the Tag is present, the boolean is 1, and if the
Tag is not present, the boolean is 0.) and then apply to Deep
Feed-forward Neural Network (1424 input nodes, 2000 nodes
* 3 hidden layers, 2 output nodes, DropConnect p=0.5, L2-
regression=0.001). We have collected a total of 666 SWFs:
333 malicious set from VirusTotal Intelligence, 333 benign set
from Google search following the our approach (iii).
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Fig. 4. Weight results of top-ranked malicious Tag according to the CVE
based evaluation

Figure 4 shows what features are benign or malicious,
which validates our approach (i). Note that “ScriptLimits”
feature is benign when 2007∼2010 train set is trained, but
“ScriptLimits” feature is malicious when 2007∼2014 train set
is trained, which validates our approach (ii).

TABLE I. DETECTION ACCURACY ACCORDING TO THE CVE BASED
EVALUATION

Train Test Accuracy

2007∼2010 2011∼2015 51.77%

2007∼2011 2012∼2015 97.75%

2007∼2012 2013∼2015 97.78%

2007∼2013 2014∼2015 98.33%

2007∼2014 2015 100%

Table I shows that our detection system has high accuracy.
We plan to implement the other modules, which will improve
accuracy and enable to abstract interesting features from Ac-
tion bytecodes. Therefore, we expect that our detection system
could detect zero-day Flash malwares more accurately.
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